Natural Compounds as Modulators of NADPH Oxidases

نویسنده

  • Tullia Maraldi
چکیده

Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we pres...

متن کامل

Competitive inhibition of copper amine oxidases by vitamin B hydrochloride in chickpea

Copper amine oxidases (CAOs) catalyse the oxidative de-amination of biogenic amines which are ubiquitous compounds essential for cell growth and proliferation. The enzymes are homodimers containing both topaquinone and a Cu(II) ions as cofactors at the active site of each subunit. After extraction and purification of chickpea (cicer arietinum) amine oxidase by chromatoghraphy, Km and Vmax of th...

متن کامل

A radical adventure: the quest for specific functions and inhibitors of vascular NAPDH oxidases.

Over the past two decades, the number of scientific publications addressing the role of oxidative stress in physiology and pathophysiology has increased exponentially. Almost all cardiovascular disease states including hypertension, hyperlipidemia, diabetes, arteriosclerosis, unstable angina, vasculitis and myocarditis, restenosis as well as ischemia/reperfusion have been linked to an enhanced ...

متن کامل

A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis

Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. ...

متن کامل

Oxidative Stress and Vascular Function: Implications for Pharmacologic Treatments

Production of considerable amounts of reactive oxygen species (ROS) eventually leads to oxidative stress. A key role of oxidative stress is evident in the pathologic mechanisms of endothelial dysfunction and associated cardiovascular diseases. Vascular enzymes such as NADPH oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase are involved in the production of ROS. The que...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013